

Role of Green Nanotechnology in Sustainable Nanotechnology

Panel Discussion

Terry Wilkins

CEO, Nanomanufacturing Institute, University of Leeds, UK Yorkshire Forward Professor of Nanomanufacturing Innovation

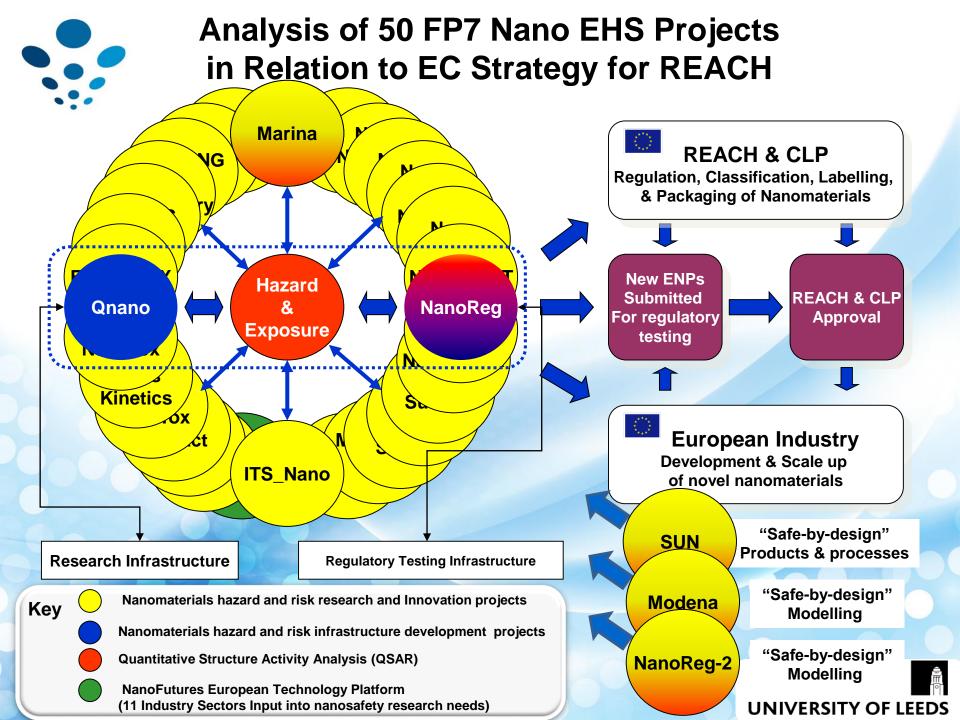
Prince of Wales Award For Innovation & Production

t.a.wilkins@leeds.ac.uk

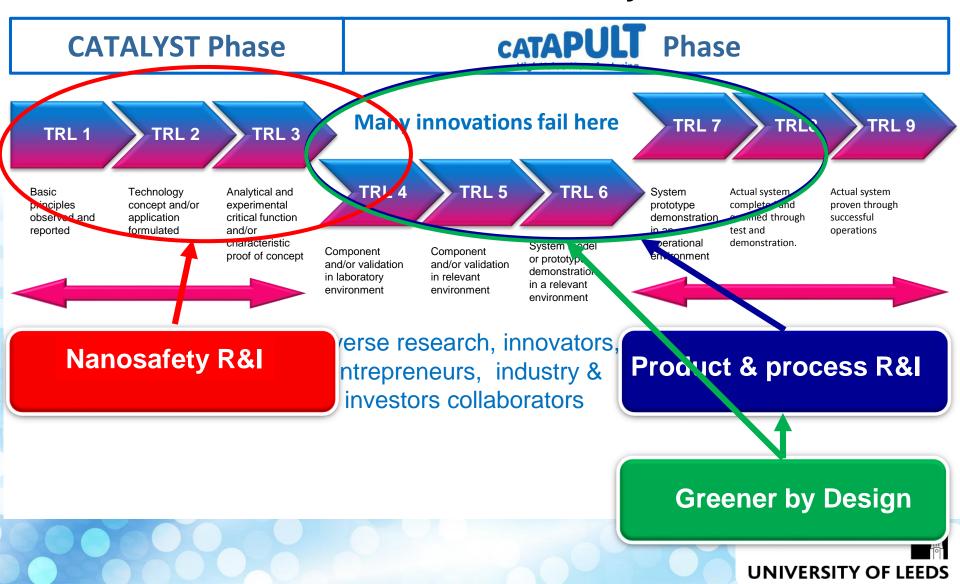
SUN - SNO – GUIDENANO Sustainable Nanotechnology, March 2015, Venice

Dr Virginie Heidweiller GuideNano

Your Panel

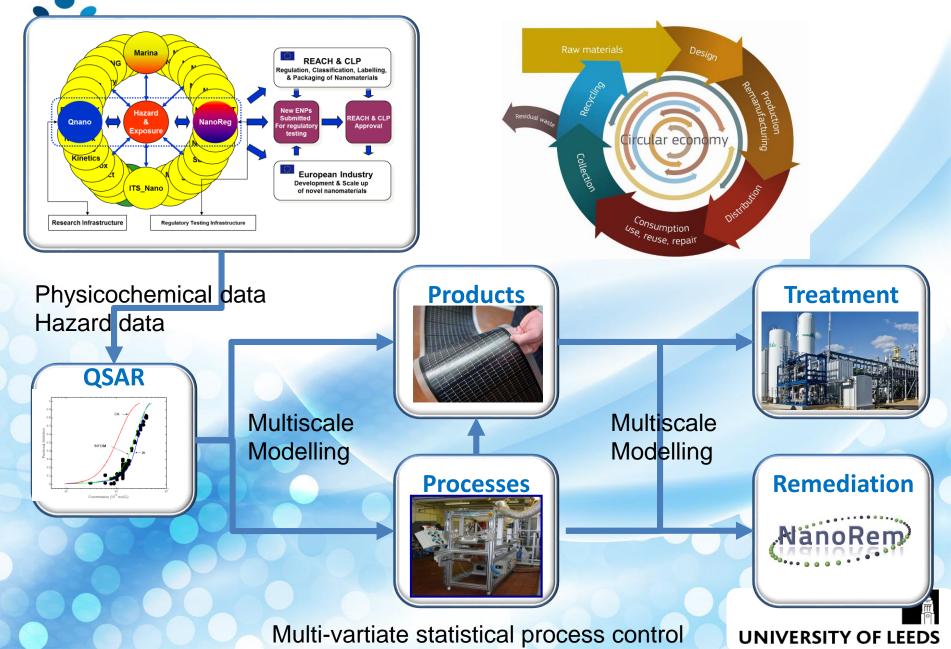

- Dr Mark Wiesner, Duke U, US*
- Dr Barb Karn, SNO, US*
- Dr Anna Costa, Istec CNR, IT
- Dr Socorro Vázquez-Campos, LEITAT, ES
- Dr John Warner, Warner-Babcock Institute for Green Chemistry, LLC, US
- Prof Terry Wilkins, Leeds U, UK*
- * Short presentations

Exploitation of the validated knowledge and tools from global nanosafety research to design both products and processes that quantitatively minimise negative impacts &/or maximise benefits for the environment

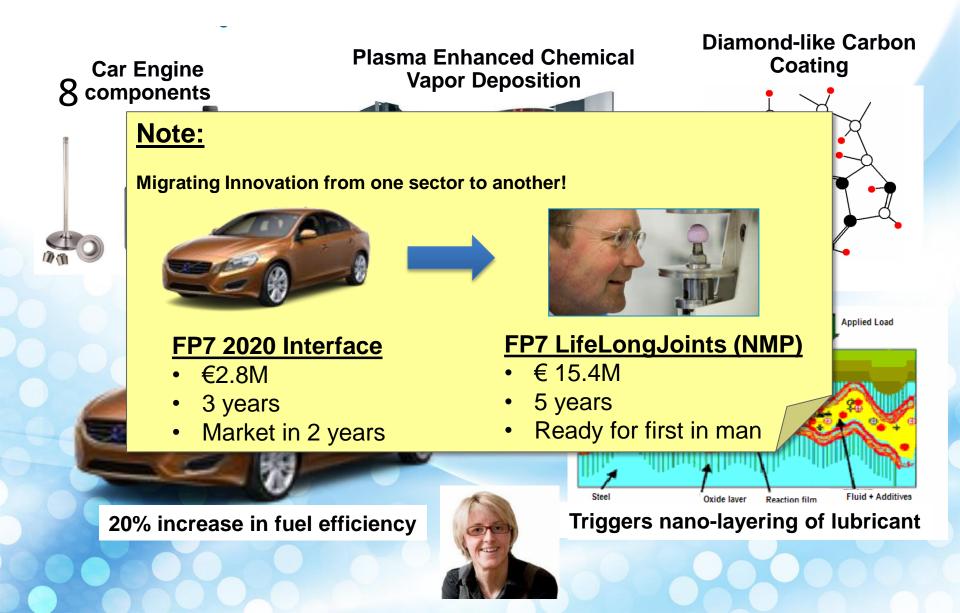

NB: Nanomaterials have one or more dimensions between1-100 nm

What TRLs are: a) nanotechnology and b) nanosafety translational research currently at?

CIRCULAR ECONOMY


H2020 NMBP Industrial Technologies R&I Programme Objective

- no longer linear
- extended life time
- collaborative approach
- cross-sectors
- multi-stakeholders
- innovation in all forms
- design strategies
- new business models
- demand-side measures
- etc...



Designing Green(er) Nanotechnology

Nano-Dynamic Lubricant Systems FP7 2020 Interface Project (TRANSPORT)

Beam Splitter

Optical Bench

HFC Refrigerant Gas Manufacturing

Closed loop control system

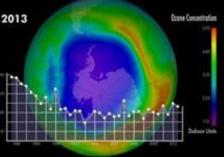
Detector .aser

red Spectrometers

Source

NIGOLET

Comput


Interferogram

Chemical engineering Design models

NB: Measures all reactants & products at T=200°C & P= 200 psi in an atmosphere of HF (75%) and HCl (25%)

Ozone layer hole repairing (due to HFCs replacement of CFCs) UN Environment Panel Sept 2014

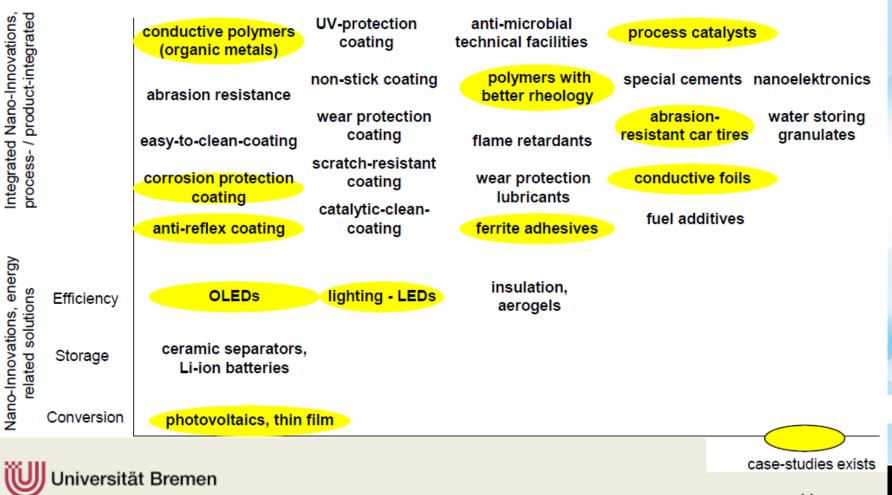
NB: HFC Sales €15Bn/year

KLEA 134a

Hydrofluoroethane

Life Cycle Assessment of Nanomaterials and Nanoproducts

1st Sustainable Nanotechnology School


Dipl. Ing. Michael Steinfeldt Venice, 12th January 2015

Nanotechnology-based products / applications on the market (II)

UNIVERSITY OF LEEDS

Overview of studies of published LCAs of the manufacture of nanoparticles and nanocomponents

- only 35 publications: "LCA" of Nano-Applications
- only 15 publications: "LCA" of the manufacture of nanoparticles and nanocomponents

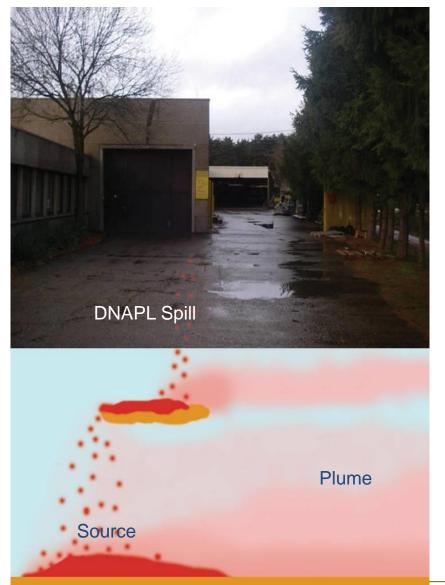
Nanoparticle and/or	Assessed impact(s)	References	
nanocomponent			
Metal nanoparticle pro-	Cradle to gate energy assessment,	(Osterwalder, N., Capello, C.,	
duction (TiO2, ZrO2)	global warming potential	Hungerbühler, K. and Stark, W.J. 2006)	
Nanoclay production	Cradle to gate assessment, energy use, global warming potential, ozone layer depletion, abiotic depletion, photo- chemical oxidant formation, acidifica- tion, eutrophication, cost	(Roes, A., Marsili, E., Nieuwlaar, E. and Patel, M. K. 2007)	
Several nanomaterial syntheses	E-factor Analysis	(Eckelman, M.J., Zimmerman, J.B. and Paul T. Anastas, P.T. 2008)	
Carbon nanoparticle pro- duction	Cradle to gate energy assessment	(Kushnir, D. and Sandén, B. A. 2008)	
Carbon nanotube pro-	Cradle to gate assessment with Si-	(Singh, A., Lou, H.H., Pike, R.W.,	
duction	maPro software, energy use, global warming potential,	Agboola, A., Li, X., Hopper, J.R. and Yaws, C.L. 2008)	
Single-walled carbon	Cradle to gate assessment with Si-	(Healy, M. L., Dahlben, L. J.and	
nanotube (SWCNT) pro- duction	maPro software, energy use, global warming potential,	Isaacs, J. A. 2008)	
Carbon nanofiber pro-	energy use, global	(Khanna, V., Bakshi, B. R. and	
duction	warming potential, ozone layer depletion, radiation, ecotoxicity, acidification, eutrophication, land use	Lee, J. 2008)	
Nanoscale semiconduc- tor	Cradle to gate assessment, energy use, global warming potential	(Krishnan, N., Boyd, S., Somani, A., Raoux, S., Clark, D. and Domfeld, D. A. 2008)	
Nanoscaled polyanilin production	Cradle to gate assessment with Um- berto software, energy use, global warming potential, …	(Steinfeldt, M., von Gleich, A., Petschow, U., Pade, C. and Sprenger, R.U. 2010)	
Multi-walled carbon	Cradle to gate assessment with Um-	(Steinfeldt, M., von Gleich, A.,	
nanotube (MWCNT) pro-	berto software, energy use, global warming potential,	Petschow, U., Pade, C. and Sprenger, R.U. 2010)	
Nanoscaled Titanium di-	Cradle to gate assessment, Ecoindicator	(Grubb, G.F. and Bakshi, B. R.	
		10.403	

UNIVERSITY OF LEEDS

Universität Bremen

Nanotechnology for contaminated land Remediation

University of Stuttgart, USTUTT – VEGAS Hans-Peter Koschitzky

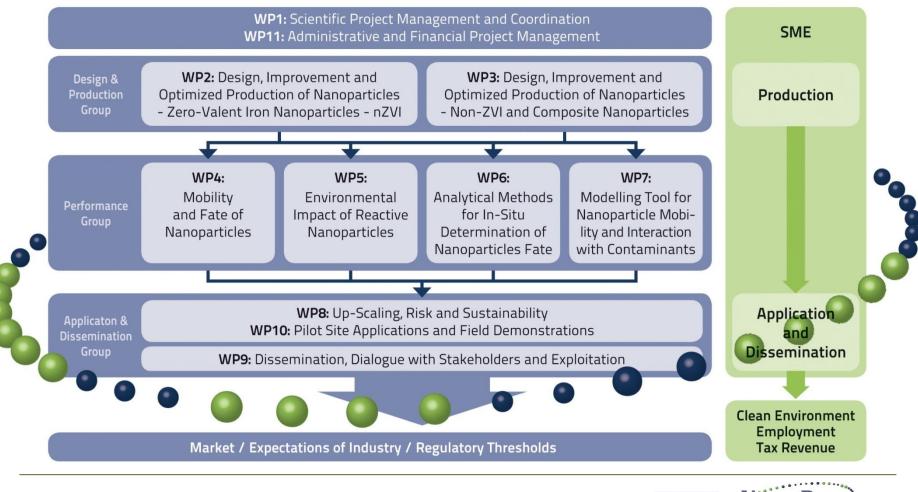


Sustainable Nanotechnogy Conference Venice, 9-11 March 2015 NanoRem short overview

WP1, University of Stuttgart USTUTT – VEGAS Nano particles for *in situ* remediation

- Small size
 → higher surface area
 → more reactive
- NPs (in a carrier fluid) injected into saturated zone via wells
- Focus on source treatment
- Applicable below buildings
- "independent" of application depth
- "semi-passive" technology
- particles e.g. nZVI
- innovative technology

Sustainable Nanotechnogy Conference Venice, 9-11 March 2015 NanoRem short overview


WP1, University of Stuttgart USTUTT – VEGAS

NanoRem Structure

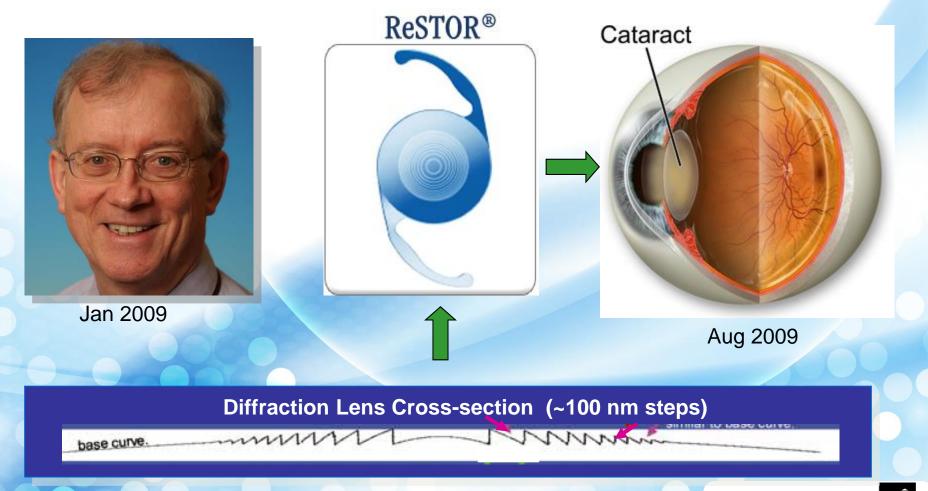
Taking **Nano**technological **Rem**ediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment

Project Structure

Sustainable Nanotechnogy Conference Venice, 9-11 March 2015 NanoRem short overview

NanoRem Pilot Sites

Site	Country	Site Primary Investigator	Target Cont.	NP-Type	Reaction Principle	Aquifer
Zurzach	СН	Solvay	CHC	milled nZVI	Reduction/ Sorption	porous / unconfined
Spolchemie 1	CZ	Aquatest	СНС	NANOFER 25s	Reduction	porous / unconfined
Spolchemie 2	CZ	Aquatest	BTEX	Iron-Oxide	Oxidation/ microbial Enhancement	porous / unconfined
Barreiro	РО	GeoPlano	HM	Iron-Oxide	Immobilisation	porous / unconfined
Besor-Secher Neot Hovar	IS	Negev, BGU	CHC	air-stable nZVI NANOFER STAR*	Reduction	fractured
Balassagyarmat	Н	Golder	СНС	Carbo-Iron	Reduction / Soption	porous / unconfined
Bizkaia	ES	Tecnalia	HM	Iron-Oxide	Reduction/ Immobilisation	porous / unconfined


Panel discussion topics:

Definition of "Green nanotechnology in Sustainable nanotechnology"?

- Greener by design principle for products and processes
- Nanotechnology to address big environmental issues (Ozone layer, energy global warming etc.)
- Nanotechnology for environmental remediation
- Where are the gaps in science and translational research?
- What new challenges are there for regulators and industry?
- Addressing ethical and public dialogue issues?
- What should our priorities be for future collaborative projects?

